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ABSTRACT
In this paper we present an automatic method for the recon-
struction of a 3D volumetric representation of real world
scenes from a set of multiple uncalibrated images. The
process is divided in two steps (1) an automatic calibra-
tion of the cameras and (2) a scene reconstruction consis-
tent with the input views. The calibration of the cameras
is performed using automatically tracked 2D features, and
consists in calculating a projective approximation and up-
grading it to an Euclidean structure by computing the pro-
jective distortion matrix in a way that is analogous to esti-
mate the absolute quadric. Moreover, in contrast to other
approaches our process is essentially a linear one. The un-
derlying technique is based on the Singular Value Decom-
position (SVD) and the process is enhanced with a careful
study of the rank of the matrices involved in order to get
the excellent results shown in the paper. The volumetric re-
construction of the scene is performed using an improved
voxel carving algorithm. The result is a voxel-based model
of the external surface of the physical objects present in the
scene. Optimized data structures and graphics hardware
acceleration are used to achieve a substantial reduction in
computation time. Furthermore, the spatial information ob-
tained from the the camera calibration process about the 2D
tracked measurements is used to automatically set the in-
ternal thresholds of the carving algorithm, achieving a full
automation of the method.
KEY WORDS
3D reconstruction, Structure from Motion, Singular Value
Decomposition, Voxel Carving.

1 Introduction
In recent years Image Based Modeling and Rendering
(IBMR) techniques have demonstrated the advantages of
using real image data to greatly improve the rendering qual-
ity. New rendering algorithms have been presented that
reach a photorealistic quality at interactive speeds when
rendering 3D models by using images of real objects and
some additional shape information (i.e. a geometric proxy).
While these methods have emphasized the rendering speed
and quality, they generally require extensive preprocessing
in order to obtain accurately calibrated images and geomet-
ric proxies of the target objects. Moreover, most of these al-
gorithms require user interaction for the camera calibration
and image registration part or need the use of expensive

equipment such as calibrated gantries and 3D scanners.

In this paper we present a method for extracting a 3D
volumetric representation of a real object using a set of dif-
ferent views taken with an inexpensive sensor such as a dig-
ital camera or a camcorder. More specifically, the goal is
to recover the 3D geometry of a scene from the 2D projec-
tions obtained from the digital images of multiple reference
views, taking into account the motion of the camera. Nei-
ther the camera calibration (intrinsic parameters and pose)
nor the geometry of the scene are known.

The first part of the process is the calibration of the
different reference views of the scene. This is known as the
structure from motion problem (SFM). Since we are work-
ing with uncalibrated cameras, we use a stratification ap-
proach to recover both camera parameters and structure of
the scene ([16], [6], [7], [3], [10]). The idea is to obtain
a projective reconstruction and then upgrade it to an Eu-
clidean structure. For a good review of different methods
we suggest [5].

One advantage of the calibration approach presented
in this paper is that allows to recover an Euclidean recon-
struction of the scene without any initial solution, which is
one of the drawbacks of most of the existing methods. An-
other important feature is that the entire process is based
on solving linear systems using the SVD decomposition
algorithm. The knowledge of the geometric meaning and
rank properties of the different transformations represented
by the matrices of the process allows to enforce a valid Eu-
clidean reconstruction. As shown in [12] high accuracy can
be obtained when synthetic data is used, and when noise is
added or real data is used, the precision is still acceptable.

The second part of the process is the reconstruction of
the 3D geometry of the objects in the scene, based on the
reference images and their registration information. Dif-
ferent approaches such as photogrammetry, stereo vision,
contour and shadow analysis techniques have been used to
solve this problem. Recently a set of volumetric techniques
based on voxel coloring algorithms ([1], [2], [4], [9]) have
been used for reconstructing complex object shapes with
excellent results. These methods consist in carving a vox-
elized piece of virtual material that contains the objects in
a similar way as and artist sculpting a raw block of mar-
ble. The tradeoff is the extended computational cost. The
method presented in this paper improves the run-time speed
of the space carving algorithm based on voxel coloring [13]
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by using optimized data structures and the OpenGL API
which is fully supported by hardware. Moreover, the inter-
nal threshold selection is performed automatically and the
color consistency test is improved using a statistical crite-
rion.

2 Image Calibration
The presented solution of the SFM problem considers a set
of reference views as a sequence of images taken with a sin-
gle camera over time. The input data consists of a sparse
set of features, 2D points, selected in the reference views.
We assume that the features and their individual correspon-
dences along the set of images are given, characterizing
perfectly the 2D trajectories of each feature in the sequence
of images.

The method does not require prior knowledge of the
3D coordinates of the features, the relative position for of
the camera in the scene for each reference view (extrinsic
parameters of the camera), and the internal geometry (in-
trinsic parameters). The goal is to recover all this informa-
tion by analyzing the variation of the 2D measurements of
each of the features in the set of reference images.

Here on, and to guarantee good numerical condition-
ing, we assume that the 2D features are expressed in nor-
malized image coordinates, that is, following [17] the im-
age pixels coordinates are scaled to lie in a [−1, 1]×[−1, 1]
image rectangle.

2.1 Projective Factorization
The projective factorization method ([16],[7], [3],[10]) is
a generalization of the factorization methods developed in
[15] and [11] for the orthographic and the paraperspective
projection models respectively. The projective factoriza-
tion gives a more general framework to recover 3D shape
and motion from multiple view images, overcoming the re-
strictive assumptions of the other two models. However,
it is only possible to compute a reconstruction up to an
unknown projective transformation unless additional infor-
mation about the camera intrinsic parameters, the motion
and the object dimensions can be obtained.

The goal is to recover 3D structure and camera param-
eters from m uncalibrated perspective views of a scene and
the 2D projection on each image of n 3D object points. Let
Xj = (Xj , Yj , Zj , 1)

T , j = 1, . . . , n, be the unknown
homogeneous 3D point coordinates, Pi, i = 1, . . . ,m
the unknown 3 × 4 camera projection matrices, and xij =
(uij , vij , 1) the measured 2D homogeneous projections of
the 3D points.

We introduce the projective depths as the non-zero
scale factors λij that relate the 3D points in camera co-
ordinates and their projection in 2D image space

λijxij = PiXj i = 1, . . . ,m j = 1, . . . , n. (1)

This can be stated using matrix notation as W = PX,

where W is the 3m × n scaled measurement matrix, P is
the 3m × 4 perspective matrix and X is the 4 × n shape
matrix. Since a scale factor can be introduced in the previ-
ous equation without altering the result, each reconstructed

scene is defined up to re-scaling. With the correct scaling,
normalized points and projections the λ factors become
true optical depths.

The projective depths and 3D structure of the scene
are dependant on each other and can not be calculated sep-
arately. On the other hand, since the matrix W is asso-
ciated to a projection of 3D points in 2D image space, its
rank has to be equal to four. Consequently, for points in
general positions, a rank-4 factorization of the scaled mea-
surement matrix produces a valid projective reconstruction
of the points.

There exist different approaches ([3], [6], [7], [10],
[16]) to construct an iterative algorithm that converges to a
rank-4 decomposition of the measurement matrix. We pro-
pose an iterative projective factorization algorithm to re-
cover the values of λij based on Singular Value Decompo-
sition (SVD) (see [12] for more details).

2.2 Metric Reconstruction
The projective factorization of Equation (1) recovers the
motion and the shape up to a linear projective transforma-
tion H known as the Projective Distortion Matrix (PDM)

W = P̂ X̂ = P̂HH−1X̂ = PX, (2)

with P = P̂H and X = H−1X̂ being P and X unknowns.
We define as normalization the process of imposing a

set of metric constraints to calculate the PDM and recover-
ing a correct Euclidean motion and shape. In [12] is shown
this process is equivalent to the calculation of the absolute
quadric of the epipolar based methods.

For each frame i, the 3 × 4 projective matrix Pi can
be decomposed into

PiH = µiKi (Ri|Ti) i = 1, . . . ,m, (3)

where

Ki =
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 , i = 1, . . . ,m.

(4)
Here µi is a scale factor, the matrix Ki encodes the intrinsic
parameters of the camera where (u0i, v0i) is the principal
point, αi is the aspect ratio, βi is the skew and fi is the
focal length. Ri and Ti are the 3 × 3 rotation matrix and
translation vector of the camera in the ith frame.

Different cases can be considered according to the
number of unknown intrinsic parameters of the camera. In
our approach we assume zero skews, an aspect ratio of one
and the principal point located in the center of the image, at
the origin of coordinates (see [7] for the other possibilities).
Our study considers the focal length f as the only unknown
variable, which is an acceptable assumption when the ratio
between the position of the scene and the focal length is
small. This is not valid in in aerial imagery, where the ob-
jects are very far away from the camera and the motion is
small in compared to the distance.



2.2.1 Normalization
Without lack of generalization we can assume µi = 1 in
Equation (3) and define the global matrix P = (M |T ),
where Mi = KiRi, and Ti = KiTi.

If we express the 4 × 4 PDM matrix as H = (A|B)
where A is 4×3 and B is 4×1, from (2) we have P = P̂H ,
then (M |T ) = P̂ (A|B). The computation of the transla-
tion component (T = P̂B) can be decoupled from the ro-
tation one (M = P̂A), allowing to compute the Euclidean
reconstruction using essentially linear algorithms, instead
of the nonlinear ones related with Kruppa’s equations [5].

Taking into account that the matrix X is related to
the geometry of the object and therefore is independent of
the camera parameters, we can define a local coordinate
system with arbitrary orientation and the origin at the center
of mass of the object

XT
j = (τjsxj , τjsyj , τjszj , τj) , j = 1, . . . , n, (5)

where sj = (sxj , syj , szj) are the local coordinates. Look-
ing at the sum of the X coordinates of the projected points
and using the center of mass property, we obtain

n
∑

j=1

λijuij = Txi

n
∑

j=1

τj . (6)

Analogously, a similar expression is obtained for the other
coordinates Y and Z. A system in terms of B can be de-
fined considering the translational component T = P̂B

Txi = P̂xiB, Tyi = P̂yiB, Tzi = P̂ziB. (7)

Finally, a homogenous system can be constructed di-
viding (7) by Tzi and combining with (6). We obtain 2n
linear equations for the 4 unknown elements of B. The
base of the null space of the system gives us the elements
of B.

The next step is to compute the matrix A to complete
the desired projective distortion matrix. The information
embedded in A can be seen as the orientation of the PDM.
From (3) and the rotational component (M) = P̂ (A) we
obtain

Mxi = µifiii + µiu0iki,

Myi = µiαifiji + µiv0iki, Mzi = µiki. (8)

Considering the assumptions on the intrinsic camera pa-
rameters, αi = 1, u0i = v0i = 0, and imposing the Eu-
clidean rotational axis to be orthogonal we get the follow-
ing metric relations

|Mxi|
2 = |Myi|

2, |Mzi|
2 = µ2

i ,

Mxi · Myi = Mxi · Mzi = Myi · Mzi = 0 (9)
From (9), the metric constraints can be written as lin-

ear constraints

MMT = P̂AAT P̂T = P̂QP̂T . (10)

obtaining a set of 4m linear equations for the 10 unknowns
of Q. In [7] Han and Kanade avoid the homogeneous
condition by adding an extra metric equation fixing the
first scale factor to one, µ1 = 1, and adding the equation
|Mz1|

2 = 1 to (10). A least square solution of Q is cal-
culated and by performing a rank 3 decomposition of Q a

solution for A can be extracted completing the projective
distortion matrix.

As shown in [12], the method proposed in [7] does
not impose to (10) the essential rank condition of the ab-
solute quadric: rank(Ω)=3 (see [17]). Moreover, according
to [12] the homogeneous system (10) turns to be of rank
8 since the unknowns involved in the system (10) are es-
sentially the components of the absolute quadric Ω and
the dual absolute conic ω. In [17] it is shown that there
is an additional constraint that forces the angles between
visual planes measured using Ω to agree with those mea-
sured from the corresponding image lines using ω. When
projected to epipolar planes this gives the Kruppa linear
constraint.

Therefore, there is an extra degree of freedom on the
solution of (10) which can be used to enforce the final ma-
trix Q to be rank 3. In our method we consider a lin-
ear combination of the two vectors associated to the null
space of (10) in terms of an unknown constant. Imposing
det(Q) = 0, we obtain a fourth degree polynomial in terms
of the unknown constant. We choose the root that enforces
a rank 3 matrix Q. Then, the matrix A will be calculated as
a rank 3 approximation of Q using the SVD decomposition.

3 Shape Reconstruction
The result of the image registration process is the set of in-
trinsic parameters, the position and orientation of the cam-
eras and the 3D position of the 2D features. The next step
is to recover the 3D shape of the objects in the scene. As
mention before, the proposed solution is an improved ver-
sion of the space carving algorithm presented in [9].

Six progressive carving steps are performed by
sweeping a carving plane along the positive and negative
direction of each axis of a bounding volume that contains
the objects to reconstruct. At each iteration the voxels in
the carving plane are tested for color consistency in all the
images where they are visible, and removed if not consis-
tent. The resulting voxel-based object is called the Photo
Hull because when reprojected to each view, it matches
closely the original images. As shown in [9], the accu-
racy of the final model is related to the number of reference
views and their coverage of the scene. A crucial part in the
method is the Consistency Check Criterion, the mechanism
used to decide whether a voxel will be kept or carved.

The main steps of the proposed improved space carv-
ing algorithm are

1. Estimate threshold.
2. Determine initial voxel volume.
3. Store the voxels in an octree data structure.
4. Determine active cameras. Draw frontal faces of

voxels that lie in the sweep plane.
5. Draw shadow voxels in front of the sweep plane.
6. Scan the images and build a list of voxels with

their RGB statistics per image.
7. Perform a consistency check at each voxel. If is

not consistent carve the voxel.
8. go to step 4.



The following subsections will provide more detail
about the primary components of the algorithm.

3.1 Initial Voxel Volume
The first step of the algorithm is to determine the initial
volume to be carved. The size of this volume is calculated
by upscaling the bounding box that contains the recovered
3D points from the SFM reconstruction. The orientation of
the initial volume is determined by averaging the recovered
camera orientations, averaging the exposed voxel surface in
all the cameras.

A large amount of the initial volume projects to the
reference images in areas that can be considered as back-
ground. Moreover some of the initial voxels are visible in
one or few images and will not contribute to the final vol-
ume. To improve the performance of the algorithm it is
reasonable to eliminate such voxels prior to start the carv-
ing process.

We use an octree data structure to keep track of the set
of consistent voxels throughout the carving process. The
root node is initialized and a visibility test is performed to
remove the set of voxels not visible. This is done by re-
cursively subdividing the octree and testing the cells for in-
tersection against the camera frustums. If an octree cell is
visible in less that a minimum number of cameras it will be
marked as initially carved and it will not be further subdi-
vided. Moreover, if the reference images can be segmented
into background and foreground, a background test can be
performed in order to stop the subdivision process if an oc-
tree cell falls into the background in any of the images.

The result of this initialization is a pre-carved voxel
space adjusted to the object’s convex hull, that improves
the performance of the algorithm eliminating voxels from
the analysis. The octree data structure plays an important
role in storing and managing the voxels during the plane
sweep carving process.

3.2 Carving Plane Projection
The space carving algorithm is an iterative process that in
each step projects a plane of voxels to all the cameras. A
footprint is the projection of a voxel in one camera focal
plane. For each footprint the average color and variance are
calculated and stored together with the other footprints of
the same voxel. Since this step is performed several times,
we have optimized our implementation using OpenGL ac-
celerated hardware to generate the footprints.

Each voxel is assigned with a unique RGB color en-
coding its location in space. Then all the voxels of the carv-
ing plane are drawn for one of the reference views. The
rendered set of voxels determine a color mask that encodes
for each pixel of the image to which voxel belongs. The
footprint statistics are obtained by scanning the reference
image using the color mask. This process is then repeated
for each of the reference views.

In order to avoid evaluating voxels occluded to the
reference images by other voxels previously determined as
consistent, we first render each of the voxels of the active

carving plane as a single colored square. Then all the non-
carved voxels previously analyzed are rendered in black
color enabling the zBuffer of the videocard in order to mask
those parts of the images already assigned to previous vox-
els. We call these the shadow voxels.

3.3 Consistency Check Criterion
The consistency check tests each voxel of the carving plane
to determine if it belongs to the object or not and then mark
it as carved. Assuming the object surface is Lambertian, the
color of a voxel does not change regardless of the viewing
angle and a voxel consistency can be determined by mea-
suring and comparing the color of its footprints. If they
have a similar color the voxel will be kept and rendered as
a shadow voxel in subsequent iterations. Otherwise it will
be carved.

In the approach of Kutulakos and Seitz [9] they con-
sider a unique color value for each footprint. However the
voxels project to larger areas than a single pixel, and impor-
tant information is lost making the method very sensitive to
sensor noise. Therefore, as in [1], we use a statistical con-
sistency check instead of the traditional one. For each foot-
print of a voxel we store the number of pixel samples, and
for each R,G and B channel the mean, the variance, the sum
of values and the sums of squares of all the contributing
pixels. The consistency check is a One Way ANOVA with
Unequal Sample Sizes test considering the different foot-
prints of a voxel as groups and testing if all those groups
can be assimilated to a single color distribution.

In the work by Kutulakos and Seitz [9] and by Broad-
hurst and Cipolla [1] the user is required to select a thresh-
old for the consistency check. To avoid a manual selection
our approach exploits the additional scene information ob-
tained during the calibration. By performing an initial con-
sistency check of the voxels that contain the 3D points of
the object used during calibration, a threshold estimation
that would avoid carving those voxels can be calculated.

4 Experiments and Results
Several validation tests have been performed with real un-
calibrated images. The experiments consisted in obtain-
ing the required 2D measurements, calibrating the different
views and performing a volumetric reconstruction of the
objects. All tests were performed on a PC system with a
1.8GHz P4, 512Mb of RAM and a 64Mb NVIDIA Quadro
Pro videocard. Figure 1 shows a mosaic of one of the refer-
ence images and three different views of the reconstructed
model for each of the datasets. A detailed analysis of the
performance of the different stages of the reconstruction
pipeline is presented.

The first stage of the pipeline is the data acquisition
and preprocess to obtain 2D measurements for the cam-
era calibration. Given the differences of footage and image
quality of the datasets we have used three different tracking
strategies.

The house dataset has been tracked automatically
with an in-house tracker implementation. The images do



House Dragon Anteater
# Features 39 10 9
# Images 30 5 39
Projection Time(sec.) 4.15 0.421 1.5
Metric Time (sec.) 0.031 0.016 0.016
Max 2D Error (pixels) 4 11 5

Table 1. Autocalibration results

not show any specular reflections on the object surface and
it presents sharp corners facilitating feature detection and
tracking. The pose variation of the object between frames
is very small. The dataset consists of 30 frames of 512x512
pixels and a total of 39 points found by the tracking system.

The second dataset, the dragon, consists of a few still
pictures. An initial set of 15 images of 720x480 pixels was
reduced to 5 useful ones due to specularities in the object.
We manually selected 10 features.

Finally, the anteater dataset has 393 frames of
720x480 pixels. We put markers in the object and we used
a semiautomatic tool that allows the user to select a point
to track in one frame, and the software does the tracking
through the rest of frames. A total of 9 features were used.

The second stage of the pipeline is the camera auto-
calibration, where the camera intrinsic and extrinsic param-
eters related to the 3D location of the object itself are calcu-
lated. To evaluate the accuracy of the reconstruction a 2D
reprojection error was calculated (Table 1). Additionally a
visual quality check was performed since no ground truth
data was available.

The last stage of the pipeline is the volumetric recon-
struction by voxel carving. The initial resolution of the
carving volume was set to 256 voxels per side and a re-
duced subset of the images was used: 7 images for the
house dataset, 5 images (all the available) for the dragon
dataset and 6 for the anteater dataset.

House Dragon Anteater
Volume 256

3
256

3
256

3

# Initial Leafs 2747120 2333184 1438448
Initial Memory (Kb.) 173429 147518 91827
# Final Leafs 116306 112438 107704
Threshold 4.6e-2 1.0e-2 1.9e-2
Init. Time (sec.) 501 278 539
Carving Time (sec.) 472 291 560

Table 2. Voxel carving results

To reduce the computation time of the carving process
a set of background/foreground masks have been manually
created for each of the datasets to enable the use of the
background testing during the initialization of the volume.
Table 2 shows the initialization time, initial volume, vol-
ume reduction and memory used to store the octree. This
initialization plays an important role since it reduces the
initial volume to a 16.3%, 13.9% and 8.6% of the origi-
nal 2563 voxels for the house, dragon and anteater datasets
respectively.

The threshold for the consistency check has been cal-

culated using the voxels containing the recovered 3D points
of the objects. Before starting the initialization of the oc-
tree, these voxels are projected into the reference views and
the threshold is adjusted to guarantee their consistency. The
value represents the confidence of rejecting a voxel as con-
sistent, which in our datasets are 5%, 1% or 1.9% respec-
tively.

The carving algorithm has a large computational cost
but with the octree optimization and the background test
short running times (between 9 and 18 minutes per sweep
direction) have been obtained for large voxel resolutions.

The final voxelized models have an excellent visual
appearance when viewed from the calibrated cameras, and
for any location around to those cameras. For arbitrary
views that are too far apart from the original views the mod-
els are not that accurate. This is a well know limitation
of the image based model reconstruction algorithms, since
information not captured in the images cannot be recon-
structed unless additional information is provided. How-
ever, with a set of images that provide a good coverage
of the object a fairly accurate model can be easily recon-
structed, as shown in this work.

5 Conclusions

A completed pipeline for reconstructing 3D models from
uncalibrated images of real objects has been presented.

One of the advantages of the proposed method is that
it does not require any initial solution or arbitrary additional
constraints to perform the reconstructions. Another advan-
tage is that the SFM method is linear in the unknowns,
therefore computationally faster than other nonlinear ap-
proaches.

The original space carving technique has been im-
proved by adding a statistical consistency criterion and an
automatic consistency threshold selection. Moreover, the
use of an octree based data structure to optimize the process
has shown drastic reduction of the computational time.

The entire reconstruction pipeline has been tested
with both multiple views and long image sequences. Excel-
lent reconstructions have been obtained for all the datasets,
although some of the models present concavities on the sur-
face. Moreover, the proposed method is computationally
fast in standard PC computers, making it a very attractive
solution.

As a future work, we plan to enhance the quality of
the final voxel based reconstructions by generating a polyg-
onal mesh representation which then can be texture mapped
with the original images.
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Figure 1. For each of the datasets the top left image shows one
of the reference views. The other images are different
views of the reconstructed model.




