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Camera calibration is a critical problem in applications
such as augmented reality and image based model
reconstruction. When constructing a 3D model of an object
from an uncalibrated video sequence, large amounts of
frames and self occlusions of parts of the object are
common and difficult problems. In this paper we present a
fast and robust algorithm that uses a divide and conquer
strategy to split the video sequence into sub-sequences
containing only the most relevant frames. Then a robust
stratified linear based algorithm is able to calibrate each
of the subsequences to a metric structure and finally the
subsequences are merged together and a final non-linear
optimization refines the solution. Examples of real data
reconstructions are presented.

INTRODUCTION
In recent years Image Based Modeling and Rendering
(IBMR) techniques have demonstrated the advantages of
using real image data to greatly improve the rendering
quality in virtual environments. New rendering algorithms
have been presented that reach a photorealistic quality at
interactive speeds when rendering 3D models by using
images of real objects and some additional shape
information (i.e. a geometric proxy). While these methods
have emphasized the rendering speed and quality, they
generally require extensive preprocessing in order to obtain
accurately calibrated images and geometric proxies of the
target objects. Moreover, most of these algorithms require
user interaction for the camera calibration and image
registration part or need the use of expensive equipment
such as calibrated gantries and 3D scanners.
In this paper we present a method to calibrate and extract a
set of key-frames from a video sequence that contain
enough three dimensional information to be used as the
reference views for an image based reconstruction
algorithm. More specifically, the goal is to recover the 3D
geometry of a scene from the 2D projections obtained from
the digital images of multiple reference views, taking into
account the motion of the camera. Moreover, since to

show the object from different perspectives, self-
occlusions are constantly present increasing the difficulty
of the problem.
Inspired in [1] and [2], we present a different novel
approach based on a divide and conquer strategy to fully
calibrate a long sequence of images with a high degree of
feature occlusions such as video sequences of objects in
rotating platforms. The complete sequence is automatically
divided into subsequences and, in each of them, a set of
key-frames is selected and calibrated using an improved
version of the algorithm presented in [5], recovering both
camera parameters and structure of the scene. When the
different subsequences have been successfully calibrated a
merging process groups them into a single set of cameras
and reconstructed features of the scene. A final non-linear
optimization is performed in order to reduce the overall
reprojection error.
One advantage of the presented approach is that it allows to
recover an Euclidean reconstruction of the scene without
any initial solution or prior information, which is one of the
drawbacks of most of the existing methods. Another
important feature is that the entire calibration process is
based on solving linear systems using the SVD
decomposition algorithm. The knowledge of the geometric
meaning and rank properties of the different
transformations represented by the matrices of the process
allows to enforce a valid Euclidean reconstruction. The
proposed solution is designed to be versatile in respect to
the input data allowing the use of (1) automatically tracked
video sequences, (2) manually tracked sequences which
usually contain less frames or (3) a set of still images with
features and correspondences manually selected. Here on,
we assume that the input data is given as a sequence of
images and a list of features in each image and the
correspondences with the rest of the frames. 

SEQUENCE FRAGMENTATION
The fragmentation algorithm starts with the set of features
of frame i=0 and keeps track of them in the subsequent
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frames until one of the following is satisfied:
• A minimum of key frames has been selected.
• The end of the sequence is reached.
• More than a user selected percentage of the original 

features are lost.
When this occurs, a new subsequence is created as the set
of key-frames starting from the first frame to the last
keyframe before the ending condition has been triggered. 
At the same time, each frame is tested against the last
found key-frame for a planar homography fit in order to
determine how much three dimensional variation is
present. Typically the homography error is small when
there is little variation in the camera positions between the
two frames. We use a RANSAC based approach to
determine the percentage of inliers of the 2D homography
between the two frames [3]. If this value is below a user
selected threshold, it means that there exists some
significant camera motion not modeled by the 2D
homography, and the frame is marked as a key-frame.
Otherwise, the frame is discarded and we proceed to the
next frame.
To guarantee connectivity between the different
subsequences so they can be merged, the last key-frame of
a subsequence is the first key-frame of the following one.

FRAGMENT CALIBRATION
Once a subsequence has been determined, we proceed to
perform a complete metric calibration by extracting the
measurements that appear in all the frames of the fragment
into a measurement matrix W. The presented calibration
solution is a stratified reconstruction based on linear
factorization algorithms with a non linear optimization
process to reduce the overall reprojection error. Moreover,
a robust statistical 3D analysis based on RANSAC [3] is
used to improve the quality of the reconstructions.

Inlier determination
Due to limitations and errors of the tracking algorithms, not
all the features contained in the initial full measurement
matrix are suitable to be used for the reconstruction.
Therefore an initial filtering based on a RANSAC-type
random sampling approach is needed in order to extract the
set of inlying measures.
Using this method we randomly select sets of four features,
which is the minimum amount required to obtain a
projective reconstruction. A solution for the projection
matrices P is calculated for each set and the rest of the
points are obtained as a least square solution for P and the
2D measurements. Then all the reconstructed points can be
classified into inliers or outliers depending on the
reprojection error. The solution that presents the largest
number of inliers is kept.
However, the proposed projective reconstruction algorithm

is a robust but slow iterative approach and it is not suitable
to be used multiple times as required by the RANSAC
filtering. To accelerate the selection of the best set of inliers
an closed-form affine reconstruction [3],[4] is performed
based on the randomly selected sets. 
Once an initial set of inliers has been determined, an
improved projective reconstruction is computed by
iteratively reevaluating the set of inliers and calculating a
new projective solution with the new set of inliers until the
number of inlying measures remains constant. Usually this
robust estimate converges in less that ten iterations,
allowing the use of the most costly projective
reconstruction algorithm.

Projective Reconstruction
The projective factorization method is a generalization of
the factorization method which was first developed in [4],
for the orthographic and the paraperspective projection
models respectively. It provides a more general framework
to recover shape and motion from multiple view images. 
Let Xj = (Xj, Yj, Zj , 1)T, j = 1, . . . , n, be the unknown
homogeneous 3D point vectors, Pi, i = 1, . . . , m the
unknown 3 x 4 image projections, and xij = (uij, vij , 1) the
measured homogeneous image point vectors. We call
projective depths the non-zero scale factors λij relating the
world points and its projections 

Eq (1)

The matrix W has to be a rank-4 matrix if it is the matrix
associated to a projection of a set of real points.
Consequently, for points in general positions, a rank-4
factorization of the scaled matrix produces a projective
reconstruction of the points.
An iterative algorithm presented in [5] is used to perform a
rank 4 decomposition while determining the best set of
projective depths for that factorization. 

Metric Upgrade
We want to update our projective scene reconstruction to a
metric one. Essentially the autocalibration process can be
summarized into the problem of computing a projective
distortion matrix (PDM), in other words, an homography H
such that,  and  are the metric
reconstruction of the scene. The metric camera matrices
can be decomposed in terms of the internal and external
parameters as

Eq (2)
where the 3 x 3 symmetric matrix Ki is the internal camera
parameters matrix, Ri is the euclidean rotation matrix and ti

is the translation vector.
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To derive the auto-calibration equations [3], [7], let us
choose the world coordinate frame aligned with the first
camera. If we write the plane at infinity as an usual plane,

, then

Eq (3)

To derive the auto-calibration equations, first we express
the rest of the projective cameras distinguishing between
the first three and the last columns, , and from
equations (1) and (2) we obtain (see [3])

Eq (4)
The symmetric matrix  is known to be the dual image
of the absolute conic, , which is related with the
absolute dual quadric, , by 

Eq (5)
As we are using the first camera frame as the origin, we can
write

Eq (6)

A linear system can be obtained from (6) and (5) assuming
some knowledge on the camera internal parameters. For
instance, if the principal point is at the origin then

. From (5) two linear equations can be
derived for the entries of . When, in addition, zero skew
is assumed another linear relation is added .
Finally, if an equal aspect ratio is assumed a last linear
equation  can be added. This means that 4 linear
equations can be derived from every frame when the
previous assumptions are considered. When looking at 
this assumptions gives (  is symmetrical)

Eq (7)

The autocalibration equations (5) become an
overdetermined linear system of 4 x m equations and only
five unknowns. A supplementary non linear condition

 must be added to the least square solution.
If we express the solution of the overdetermined system as
a linear combination of the solution vector and a constant λ
by the eigenvector with the lowest eigenvalue, a third
degree polynomial in terms of λ can be obtained to enforce
the supplementary condition. Then, using SVD to obtain H
and back-substituting in the equations, a final metric
reconstruction is computed under the assumption of known
principal points and skew values.

Optimization
The solution presented above is a closed form least squared
constrained approximation of the structure from motion
problem. A final non-linear optimization process is
required in order to reduce the reprojection error
accounting for all the nonlinearities not recovered in the
metric solution. Moreover, if a more sophisticated camera
internal parameter description is required, it can be
incorporated into the optimization process as well.
Additionally, since the cameras have been recovered,
several of the features not included in the reconstruction,
because they are not present in all the frames, can be
recovered by least squared approximation, increasing the
number of reconstructed points.
A bundle adjustment is then computed using the standard
sparse Levenberg-Marquardt algorithm described in the
literature (e.g. in [3] or [8]), using the reconstruction as the
initial solution.

SEQUENCE MERGING
The merging of two subsequences is performed in metric
space by determining the set of common points, between
the last frame of one sub-sequence and the first of the next
one, that by construction correspond to the same camera
and measurements.
Since both subsequences have been calibrated, the set of
reconstructed common points must be similar up to a
scaling and a translation assuming both frames aligned
with the world reference. An overdetermined linear
equation system can be built and solved relating the
reconstructed features. Then, the transformations are
applied and the sub-sequences are  merged.
Due to noise related errors during calibration or because
the set of features used in each of the subsequences is
different, small disparities in the focal length between the
two overlapped frames can appear. This does not affect the
overall reprojection error since it is a reconstruction fully
compatible with the input data. In the case that a correction
was necessary, a recalibration of one of the subsequences
should be performed using the desired focal length as a
constraint. However for the purpose of the presented work
this is not required since the 3D reconstruction of the
features is accurate and the reprojection error is small.
Once all the subsequences have been merged, a final
Levenberg-Marquardt adjustment is computed over the
complete sequence to reduce the overall error.

RESULTS
Several validation and verification tests have been
performed with real imagery. The two datasets presented in
this paper consist of video sequences of a circular camera
motion around a set of objects. All tests were performed on
a PC system with a 2.2Ghz P4, 1Gb of RAM running MS
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Windows XP. 
The first dataset, monster, consists of 423 frames and was
captured using an on-the-shelf digital video camcorder at
720x480 pixels of resolution. The object is a 20cm tall
concrete statue on top of a turning table. The camera was
set to autofocus and the object was manually rotated.
Several markers where located on the surface of the object
and a semi-automatic tracking tool was used to generate
the measurement data.
The second dataset, house, is the well know sequence from
the project MOVI and consists of 114 frames. The
measurement data was obtained using the KLT tracker [6]
set to track 500 features per frame replacing the ones that
are lost due to noise or occlusions. 
Some numerical results are presented in Table 1 showing
the reconstruction speed and how much time each of the
parts of the method use. The most expensive is the final
bundle adjustment because it uses all the selected frames
and all available features. The final reprojection mean
errors are very low (below 1 pixel) showing the accuracy
of the calibration method.
On top of the page, two figures show the 3D reconstruction
of the features and the cameras as well as one of the frames
of each sequence.

CONCLUSIONS
In this paper we have presented a novel divide-and-conquer
approach to the problem of calibrating a moving camera
during long sequences with feature occlusions, with the
purpose of identifying and recover 3D information to be
used in an image based modeling tool.
An automatic key-frame selection and sub-sequence
construction strategy is used to select and group those
frames from the sequence that most likely contain
significant three dimensional information. 
A fast and robust calibration tool is used to recover the

structure and motion from each of the subsequences. This
algorithm is mainly linear in the unknowns and does not
require any prior knowledge of the scene or camera
parameters.
The extensive use of RANSAC-based techniques, both in
2D and 3D space, provide extra robustness to the
reconstruction algorithms. Moreover the proposed method
is computationally fast in standard PC computers, making
it a very attractive solution.
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# of Frames # of used 
frames

# of 
features

Total 
time(sec)

Selection 
time (sec.)

Calibration 
time (sec.)

Bundle 
time (sec.)

# sub 
sequences

Mean error
(pixels)

Error
Var.

Monster 423 68 52 130.1 5.1 2.8 122.1 7 0.64 0.58
House 114 114 936 371.5 23.9 127.7 219.7 12 0.81 0.96

Table 1: Statistics of the datasets
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