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Abstract

An optimized linear factorization method for recovering
both the 3D geometry of a scene and the camera parame-
ters from multiple uncalibrated images is presented. In a
first step, we recover a projective approximation using a
well known iterative approach. Then, we are able to up-
grade from projective to Euclidean structure by computing
the projective distortion matrix in a way that is analogous to
estimating the absolute quadric. Using the Singular Value
Decomposition (SVD) as a main tool, and from the study of
the ranks of the matrices involved in the process, we are able
to enforce an accurate Euclidean reconstruction. Moreover,
in contrast to other approaches our process is essentially a
linear one and does not require an initial estimation of the
solution. Examples of synthetic and real data reconstruc-
tions are presented.

1. Introduction
We are facing the problem of extracting the shape of ob-

jects and the way they have been recorded using a single
uncalibrated camera. This is known as the structure from
motion problem (SfM). More specifically, the goal of the
problem is to recover the 3D geometry of a scene from the
2D projections obtained from multiple view images, tak-
ing into account the motion of the camera. But, neither the
camera calibration (intrinsic parameters and pose) nor the
geometry of the scene are known.

The correspondence process between points of different
frames is assumed to be known in the general SfM. This
paper follows the approach of ([11],[6],[7],[3],[8]) where
a small set of corresponding points is known. Since we are
working with uncalibrated cameras, we choose an stratifica-
tion approach to recover both camera parameters and struc-
ture of the scene. The idea is to upgrade from projective to
Euclidean structure. In [5] a good review of different kind
of methods is presented. The method presented in this paper
allows to recover an Euclidean reconstruction of the model
without any initial guess which is one of the drawbacks of

most of the existing methods. Another important feature is
that the whole process is based on solving linear systems
with SVD decomposition. The knowledge of the geometric
properties of different transformations represented by the
process matrices provide us a valid solution in terms of the
rank of these matrices.

Our results demonstrate that with synthetic data a great
accuracy can be obtained, and when noise is added the pre-
cision is still acceptable. These results are maintained when
real data examples are used. We also present different num-
ber of views ranging from from 5 to 50, only the computa-
tion time is affected maintaining similar error rates.

2. Projective Reconstruction

Next we will address the SfM problem using a small set
of points or features and we assume the 2D trajectories of
these features along the image sequence are known. We
assume no prior knowledge of their coordinates in the 3D
space, the relative motion between the camera and the scene
(extrinsic parameters), and the camera’s internal geometry
(intrinsic parameters) and we wish to recover this informa-
tion only from the 2D measurements corresponding to the
set of features we are considering. Following [12], we use
standard image coordinates, that is, we scale image pixels
to lie in [−1, 1]× [−1, 1] which guarantees good numerical
conditioning.

2.1. Factorization method

The projective factorization method ([11],[7],
[3],[8],[6]) is a generalization of the factorization
method which was first developed in [10] and [9], for
the ortographic projection and the paraperspective models
respectively. If no information is known about the camera
intrinsic parameters, the motion and the object, only a
reconstruction up to an unknown projective transformation
is possible to compute.

Our goal is to recover 3D structure and motion from m
uncalibrated perspective images of a scene and n 3D ob-
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ject points. Let Xj = (Xj , Yj , Zj , 1)T , j = 1, . . . , n,
be the unknown homogeneous 3D point vectors, Pi, i =
1, . . . ,m the unknown 3 × 4 image projections, and xij =
(uij , vij , 1) the measured homogeneous image point vec-
tors.

We call projective depths the non-zero scale factors λij

relating the world points and its projections

λijxij = PiXj i = 1, . . . ,m j = 1, . . . , n. (1)

Each object is defined only up to rescaling. With cor-
rectly normalized points and projections the λ’s become
true optical depths (see [11]).

We can state the problem in matrix form as W = PX,
where W is the 3m×n scaled measurement matrix, P is the
3m×4 perspective matrix and X is the 4×n shape matrix.
As is stated in [11], the projective depths depend on the 3D
structure, which in turn derives from the depths. To recover
the values of λij an iterative projective algorithm is pro-
posed, based on the Singular Value Decomposition (SVD).
Matrix W has to be a rank-4 matrix if it is the matrix asso-
ciated to a projection of a set of real points. Consequently,
for points in general positions, a rank-4 factorization of the
scaled matrix produces a projective reconstruction of the
points.

We follow [11] and [2] in building a convergent iterative
algorithm for approximating X and λij successively. The
algorithm can be stated as:

1. First set λ(0)
ij = 1, for i = 1, . . . ,m and j = 1, . . . , n

as initial conditions. This can be assumed because the depth
values (essentially for the first image) can not be determined
uniquely. In fact they can be chosen arbitrarily in the linear
subspace generated by the rows of X. As is stated in [8] the
final algorithm is robust w.r.t. initial conditions.

2. A first SVD factorization of W(k), with W(0) = W,
is computed. We use the standard notation (see [4]) W(k) =
UDV T , where U is a 3m × n matrix which their columns
are an orthogonal basis of the output (range) subspace of
W(k). D is a n× n diagonal matrix, their elements σi, are
known as the singular values of W(k), and finally, V is a
n×nmatrix containing an orthonormal basis corresponding
to the input (co-kernel) of W(k).

A first approximation P(k) = U4 is computed, where
U4 means the submatrix obtained from U using only the 4
first columns (the ones associated to the 4 larger singular
values). Analogously, X(k) = D4V

T
4 and from that we

compute the following estimate W̃(k) = P(k)X(k). This
choice guarantees (see [4], pp. 72) that we get the best
rank4 approximation of W(k), and the spectral distance (us-
ing ‖ ‖2) from the subspace of the rank 4 is exactly σ5.

3. Once the rank4 approximation W̃(k) is computed,
we get an estimate of the 3D coordinates, X(k+1)

j of the

points The new depth λ(k+1)
ij is chosen to coincide with the

Dataset # V # P # iter σ5/σ4 Max Err

B.array 9 22 814 1.1996e-9 5.4250e-8
B.array 9 22 200 1.2121e-2 0.6221
B.array 9 22 185 2.4143e-2 1.2492
B.fly 50 23 2864 3.0226e-9 7.0317e-8
B.fly 50 23 396 2.6318e-2 0.6405
B.fly 50 23 317 5.2370e-2 1.3786
house 5 38 174 3.3670e-2 2.8772

monitor 8 18 251 2.8810e-2 3.1301

Table 1. Projective recovery data
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4. After computing the new value of the depth matrix we
get an update measurement matrix W

(k+1)
i = xijλ

(k+1)
ij ,

j = 1, . . . , n and the process is repeated until the value of
the corresponding σ(k+1)

5 is either small enough or it is sta-
bilized. As we will show in the results only with synthetic
data we can obtain σ(k+1)

5 as small as we want. When noise

is added to the projections, the values of σ(k+1)
5 can reach

an small stable value but not zero.

2.2. Projective reconstruction results
In Table (1) we show some of the results we have ob-

tained with different set of data. The values, # V, # P and
# iter, stands for number of views, number of points and
number of iterations respectively. The value σ5/σ4 corre-
sponds to the final ratio obtained when iterations stop. This
value gives an idea of how far from rank4 is the reconstruc-
tion using matrix norm. On the other hand, Max Err, is the
reprojection error in pixels. The set of data we use corre-
sponds to a synthetic building model with different camera
locations (see Figure 3) (B.array,B.fly) and different rows
corresponds to the noise added which is zero, one and two
random pixels. The final rows corresponds to real images
house and monitor (see Figure 2 and 4). One can observe
that the number of iterations is much larger in the case of
ideal data because the method can reach a high accuracy
level. The process is always stopped when the value of σ5

becomes stable. The point stability is more important than
its final value, therefore we stop the iterative process when
the relative error of σ5 becomes less than 10−6. When noise
is present the final value can be far from zero but it is always
convergent.

3. Metric reconstruction
The factorization of Equation (1) recovers the motion

and the shape up to a linear projective transformation H
known as the Projective Distortion Matrix (PDM)

W = P̂ X̂ = P̂HH−1X̂ = PX (3)



with P = P̂H and X = H−1X̂ . We need to impose met-
ric constraints to recover the correct Euclidean motion and
shape. This process is called normalization. Although dif-
ferent cases can be considered according to the unknown
intrinsic parameters of the camera (see Equation (7)), we
assume zero skews and center our study to the consider the
focal length f as the only unknown parameter. This means
that we consider the case where the aspect ratio is 1 and the
principal point is at the origin (see [7] for the other possi-
bilities).

3.1. Metric reconstruction and the absolute quadric

Before discussing the details of the proposed method for
recovering the metric structure from the projective approxi-
mation, we would like to relate our approach with the meth-
ods based on epipolar geometry for autocalibration [12],
[2].

Most of the existing methods of autocalibration relies on
computing the intrinsic parameters of the camera from the
relations

ω = KKT , ω = PΩPT . (4)

where the 3 × 3 matrix ω is known as the dual absolute
image conic and its projection the absolute quadric Ω. If ω
is known, then K can be easily obtained from a Choleski
decomposition of this matrix.

It turns out that estimating the absolute quadric is equiva-
lent to an autocalibration process, because from Ω (with the
projective matrix) one can compute ω and finally K. As we
will show, recovering the PDM, is equivalent to estimating
the absolute quadric.

Let us express the PDM as the following 4× 4 matrix

H =
(

H1 b1
hT

1 1

)
. (5)

The point corresponding to the Euclidean origin is com-
puted by H(0, 0, 0, 1)T , which is (b1, 1)T , then b1 are the
coordinates corresponding to the origin. Without loss of
generality, we can assume b1 = (0, 0, 0)T (projective and
Euclidean space share the same origin).

Now, for each frame i, the projective 3×4matrix Pi can
be decomposed into

PiH = µiKi (Ri|Ti) i = 1, . . . ,m. (6)

where

Ki =


 fi βi u0i

0 αifi v0i

0 0 1


 ,

Ri =


 iTi

jTi
kT

i


 , Ti =


 Txi

Tyi

Tzi


 , i = 1, . . . ,m.

(7)

Where µi is a scale factor, the calibration matrixKi encodes
the intrinsic parameters of the camera, (u0i, v0i) is the prin-
cipal point, αi is the aspect ratio, βi is the skew and fi is
the focal length. Ri and Ti are the ith rotation 3× 3 matrix
and translation vector of the camera for each frame.

If we consider the first three columns of Pi =
(
P̃i, pi

)
,

the product PiH = µiKi (Ri|Ti) can be written with two
column equations

(
P̃i, pi

) (
H1

hT
1

)
= µiKiRi, (8)

(
P̃i, pi

) (
0
1

)
= µiKiTi. (9)

3.2. Normalization algorithm

We will give now a description of the normalization al-
gorithm as is stated in [7] and also the improvements we
add in order to obtain a more robust one. The main problem
is that we recover the absolute quadric as a 4×4matrix and
from that we need to recover the PDM. Indeed, only the part
corresponding to

(
HT

1 |h1

)
is recovered. As we will show

below, the method presented in [7] does not guarantee to ob-
tain good results by just applying a rank 3 decomposition.

Combining Equation (6) for all the frames, we can get
the global matrix P = (M |T ), where Mi = KiRi, and
Ti = KiTi.. We express the 4× 4 matrix PDM H as H =

(A|B) where A =
(

H1

hT
1

)
is 4× 3 and B is 4× 1. Since

from (3) we have P = P̂H , then

(M |T ) = P̂ (A|B) . (10)

At this moment, we decouple the computation of the trans-
lation from the rotation one. This way, we will be able to
compute the Euclidean reconstruction using essentially lin-
ear algorithms, instead of the nonlinear ones related with
Kruppa’s equations [5].

Taken into account that the shape matrix X is related to
the geometry of the object and therefore, independent of the
frame, we can express each point in local object coordinates

XT
j = (τjsxj , τjsyj , τjszj , τj) , j = 1, . . . , n. (11)

where sj = (sxj , syj , szj) are the local coordinates. We
can also consider the origin of the world coordinate system
placed at the center of mass of the scaled object points.

Now, if we look at the sum of the first coordinates of the
projected points, using the center of mass we can obtain

n∑
j=1

λijuij = Txi

n∑
j=1

τj . (12)

Analogously, a similar expression can be obtained for the
other coordinates. Next, we can use the translation terms to



compute B solving a linear least square problem. For that,
we consider (10) to get

Txi = P̂xiB, Tyi = P̂yiB, Tzi = P̂ziB. (13)

From (12) we obtain the quotient

Txi

Tzi
=

∑n
j=1 λijuij∑n

j=1 λij
,

Tyi

Tzi
=

∑n
j=1 λijvij∑n

j=1 λij
(14)

Finally, from (13) and (14) we can set up an homogeneous
system of 2n linear equations for the 4 unknowns elements
of B. The kernel of the system gives us the elements of B.

On the other hand, we have to compute the matrix A
to complete the desired distortion matrix. The information
embedded in A is the orientation of the PDM. To express
that in a compressible way, first from (6) and (10) we obtain

Mxi = µifiii + µiu0iki,

Myi = µiαifiji + µiv0iki, Mzi = µiki. (15)

In the case we are considering αi = 1, u0i = v0i = 0, and
using that the rotation axis are orthogonal we get the metric
relations

|Mxi|2 = |Myi|2, |Mzi|2 = µ2
i ,

Mxi ·Myi =Mxi ·Mzi =Myi ·Mzi = 0 (16)

From (16), the metric constraints can be written as linear
constraints using (10)

MMT = P̂AAT P̂T = P̂QP̂T . (17)

obtaining a set of 4m linear equations for the 10 unknowns
ofQ. As we will show in the next section the solutionQ that
we can obtain is related to the rank of the system (17) and
we find that this is essential for getting acceptable results in
general cases.

3.3. Recovering the absolute quadric

As we explain above, the distortion matrix is closely re-
lated with the absolute quadric. The matrix Q is essentially
Ω and from the homogeneous overdetermined system (17)
we can get a (non-unique) solution. In [7] they solved the
problem adding a new non-homogeneous metric equation
(based on the scale factors on (6)) fixing the first factor to
one, µ1 = 1, and adding the equation |Mz1|2 = 1 to (17).
After obtaining the least square solution they make a rank
3 decomposition of Q to get the matrix A and this way
completing the projective distortion matrix. As we have
observed this is not in general a robust method of solution
because the essential condition (see [12]) rank(Ω)=3 is not
imposed to the solution Q obtained from (17).

In the general case the homogeneous system (17) turns
to be of rank 8. This is because the unknowns involved

AME AME1 nAME

σ8 3.4595e-1 3.4595e-1 3.4595e-1
σ9 2.0818e-1 2.0818e-1 9.7575e-3
σ10 2.3501e-3 2.3501e-3 2.2559e-3
Q rank 4 3 3
A error 3.5798e-1 1.6120e-9 2.2567e-7
2D Error 19.7051 3.7062442 3.7062632

Table 2. Metric recovery results for real
datasets

in the system (17) are essentially the components of Ω and
ω and there is an additional constraint (see [12]) between
them. Therefore, we have one extra degree of freedom for
the solution which can be used to force the final matrix Q
to be rank 3. Indeed, we consider a linear combination of
the vectors associated to the zero singular values and we
impose det(Q) = 0. This gives us an four order polyno-
mial, using the linear combination coefficients quotient as
unique variable, and we choose the best root that gives us a
rank 3 matrix Q. After that, we obtain matrix A as a rank 3
approximation of Q using again the SVD decomposition.

4. Experiments and Results

Several tests have been performed with both real and
synthetic datasets. For the real imagery we have used previ-
ously tracked sequences of a computer monitor (8 images
and 18 points) and of a model house (5 images and 38
points). The synthetic datasets and their tracking informa-
tion have been generated using an in-house tool. The first
and second synthetic sets (Figure 3 and 6) have 9 cameras
and 22 tracked points. The third set is a sequence (Figure 5)
of 50 frames and 23 tracked points.

We have applied three different methods, mainly to com-
pare the results obtained using the method in [7] with our
improvement based on the rank of the matrix Q.

The first one uses an additional metric equation (AME)
as it is proposed in [7], the second one uses the same
equation plus the rank3 condition discussed in section 3.3
(AME1), and the third one does not use the additional
metric equation (nAME) but enforces the rank3 condi-
tion. These three methods have been tested with the ini-
tial datasets and also with four levels of uniform distributed
noise (0.5, 1.0, 1.5 and 2.0 pixels).

The results of the three methods are shown in Figure
1 where we represent, for one of the datasets, the relative
mean error (RME) of the 3D reconstructed points and the
recovered camera positions for the different noise levels.

We have found that the AME method works fine for
some of the sets but when the amount of noise increases, the
RME increases too. One of the reasons for this is the arbi-
trariness of the additional metric condition. We have 3m dif-
ferent equations to choose from, and due to noise in the data,
is difficult to decide which is the best candidate to generate



a rank3 Q matrix. Our first solution, the AME1 method en-
forces this condition for Q and it improves considerably the
accuracy of the reconstruction under noisy data. With the
nAME method no additional metric condition is necessary,
and by enforcing the proper rank to the system we are able
to extract the right solution.

Due to the lack of ground true data for the real imagery,
we have not been able to perform a numerical verification
of the reconstructed set. A 2D reprojection error analysis
(Table 2) plus a visual quality check show that the proposed
method works well under real data.
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Figure 1. Error of the recovered scene
Finally, some snapshots of the reconstructions are shown

in the figures, where a wireframe model of the reconstructed
points has been built. The small camera icons have been
located at their recovered location with appropriate orienta-
tion.

Most of the computation time is used in the iterative pro-
jective depth recovery. This becomes very noticeable in the
synthetic datasets, specially for the long sequences, where
due to the high accuracy of the data, the iterative method
takes a long time to converge to a very accurate solution.
However with the presence of noise or with the real data,
the convergence is very fast (but less accurate). On the
other hand the metric reconstruction takes an nonsignificant
amount of time compared to the iterative part. We run our
tests in a PC P4 at 1.4GHz and the real datasets take around
0.5s to 1s to complete and for the synthetic data the time
ranges between 2s up to 78s for the longest sequence (50
frames) with zero noise.

5. Conclusions
A new improvement for solving the SfM problem has

been presented. The approach is based on an iterative pro-
jective reconstruction and a linear solution for the metric
normalization process. The proper analysis of the ranks of
the matrices involved in the process plus a rank enforcement
step leads to very accurate solutions. One of the advantages
of the proposed method is that it does not need any initial

solution or arbitrary additional constraints to compute the
final result.

We have tested the method under noisy conditions and
both multiple views and long image sequences. In all cases,
excellent reconstructions have been obtained. Moreover,
the proposed method is computationally fast in standard PC
computers, making it a very attractive solution.

As a future work, we plan to extend this method to han-
dle the more general case of the intrinsic parameter un-
knowns. This will allow us to improve the accuracy in
the reconstructions of some specific camera configurations
were these extra parameter could be significative.
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Figure 2. The house example with 5 images.

Figure 3. 9 images of a synthetic building and
two snapshots of the recovered data.

Figure 4. A real set of 8 views of a monitor

Figure 5. A 50 frames recovered spiral fly

Figure 6. A 9 frames recovered sequence of a
planar motion around our building model




