

Object-Space Point Blending and Splatting

Renato Pajarola Miguel Sainz Patrick Guidotti
Information and Computer Science Electrical Engineering and Computer Science Mathematics

University of California Irvine University of California Irvine University of California Irvine

pajarola@acm.org msainz@ece.uci.edu gpatrick@math.uci.edu

Abstract

We present a novel point-based rendering approach based on
object-space point interpolation. We introduce the concept of a
transformation-invariant covariance matrix of a set of points to
efficiently determine splat sizes in a multiresolution hierarchy. We
analyze continuous point interpolation in object-space, and define
a new class of parametrized blending kernels to achieve smooth
blending. Furthermore, we present a hardware accelerated render-
ing algorithm based on

α

-texture mapping and

α

-blending.

1. Introduction

Point-based surface representations have recently been established
as viable graphics rendering primitives [Gross 2001]. In particular
they lead to compact multiresolution models that can provide effi-
cient level-of-detail (LOD) rendering. Recent efforts in
point-based rendering (PBR) have focused on compact and very
efficient multiresolution models [Rusinkiewicz and Levoy 2000,
Botsch et al. 2002], as well as on high-quality texture sampling and
rendering [Zwicker et al. 2001, Ren et al. 2002].

The major challenges are to achieve smooth and continuous
surface interpolation from irregular distributed point samples, sup-
port correct visibility as well as provide efficient rendering. We
propose a novel point blending and rendering technique that is
based on the direct interpolation between point samples in 3D. In
contrast to previous methods, we define the blending of surface
points as a weighted interpolation in object-space. We analyze the
smooth interpolation between points in object-space and define a
new class of parametrized blending kernels. We also provide an
efficient technique to calculate splat sizes in a multiresolution
point hierarchy. Furthermore, our approach exploits hardware
acceleration. An example rendering result of our approach for the
textured David statue of Michelangelo is shown in Figure 1.

FIGURE 1.

The head of Michelangelo’s David statue
rendered with

τ

=16 pixels screen tolerance, at 1/4 of the
full resolution (510827 out of 2000606 points).

2. Exposition

In this project we consider blending and rendering techniques for
surfaces represented as dense sets of point-samples organized in a
space-partitioning multiresolution hierarchy (octree). The data set
consists of surface point samples (

surfels

)

s

 with attributes for spa-
tial coordinates

p

, normal orientation

n

, surface color

c

 and spatial
extent as elliptical disk

e

 centered at

p

 and perpendicular to

n

.
These surfels cover the sampled object in object-space without
holes.

In the 4-dimensional homogeneous space of points , thus
, we define the transformation-invariant

generic
homogeneous covariance matrix

M

’

 of points

p

i

 by
, and we can express the homogeneous covari-

ance matrix in any local coordinate system given by translation

T

and rotation

R

 as . Given two differ-
ent sets of points

P

 = {

p

1

..

 p

n

} and

Q

 = {

q

1

..

 q

m

} as well as
 and , the combined generic

covariance matrix

M

’

 of the union is then given by
 without the need to recalculate the sum of tensor

products of all points . This concept of a

generic homoge-
neous covariance matrix

 is used to efficiently calculate tangential
bounding ellipses in the hierarchical multiresolution point repre-
sentation.

We interpret the interpolation of surface parameters such as
color in object-space between surfels

s

1

…

s

n

 as a weighted sum. In
fact we interpolate the color of a pixel (projection of a point

p

) from surfels

s

i

 whose elliptical disks

e

i

 intersect as
 using conforming blending functions

Ψ

i

 with

local support

 over the elliptical disk

e

i

. Using rotation-symmetric
blending kernels we can define a
conforming blending function

Ψ

i

 for the surfel

s

i

 as a normaliza-
tion given its overlapping
adjacent surfels

s

j

. Based on this blending and normalization we
developed an efficient rendering algorithm that generates the cor-
rect pixel colors by rendering an

α

-textured polygon for each surfel

s

i

 which represents its blending
kernel in object-space to get the intermediate result

 and by a post-process per-pixel normalization
with the accumulated pixel blending weight .

Table 1 shows experimental results of our point rendering
algorithm on a 1.5GHz Pentium4 CPU and nVIDIA GeFroce4
Ti4600 GPU. It lists the number of visible splats, the time for LOD
selection, the time for blending and visibility splatting, and the
time for color normalization all given in seconds per frame.

References

M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of
point sampled geometry. In

Proceedings Eurographics Workshop on Ren-
dering

, pages –, 2002.
M. Gross. Are points the better graphics primitives? Computer Graphics Forum

20(3), 2001. Plenary Talk Eurographics 2001.
L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface splatting: A

hardware accelerated approach to high quality point rendering. In

Pro-
ceedings EUROGRAPHICS 2002

, pages –, 2002. also in Computer
Graphics Forum 21(3).

S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point rendering sys-
tem for large meshes. In

Proceedings SIGGRAPH 2000

, pages 343–352.
ACM SIGGRAPH, 2000.

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In

Pro-
ceedings SIGGRAPH 2001

, pages 371–378. ACM SIGGRAPH, 2001.

Model Tol.

ττττ

#Splats LOD Splatting Normalization Total

David
0.0% 904121 0.315s 1.386s 0.0002s 1.710s

0.01% 454656 0.269s 0.791s 0.00019s 1.061s
0.12% 340537 0.195s 0.612s 0.0002s 0.808s

TABLE 1.

Rendering performance is given for each task in
seconds used per frame. Tolerance

τ

 in percent of viewport.

pi R
3

∈
p'i

T pi
T 1,()=

M' p'i p'i
T⋅∑=

M' n
1–
R T M' TT RT⋅ ⋅ ⋅ ⋅=

M'P p'i p'i
T⋅∑= M'Q q'i q'i

T⋅∑=
P Q∪

M' M'P M'Q+=
P Q∪

c
p

p
p

c
p

Ψi p() ci⋅∑=

ψ r() e a r b⁄()n⋅–() 1 r b⁄()n–()⁄=

Ψi p() ψi p() ψi p() ψj p()∑+()⁄=

c
p

ψi p() ci⋅∑() ψi p()∑()⁄=

ψi
c'

p
ψi p() ci⋅∑=

ψi p()∑

