Experimental assessment of connectionist regular
inference from positive and negative examples

René Alquézar™, Alberto Sanfeliu® and Miguel Sainz(?)
(MDep. de Llenguatges i Sistemes Informatics, Univ. Politécnica de Catalunya (UPC)
Jordi Girona Salgado 1-3, Modul C5, 08034 Barcelona, Spain
nstitut de Robotica i Informatica Industrial, UPC - CSIC, Barcelona
alquezar@lsi.upc.es, asanfeliu@iri.upc.es, msainz@iri.upc.es

Abstract

In this paper, the ability of recurrent neural networks (RNNs) for regular inference (RI)
from positive and negative examples is investigated. As in some previous works [1, 2],
RNNs were trained to learn the string classification task from samples of some target regular
languages. In addition, an automaton extraction method [3] was applied to each one of the
trained nets to obtain a description of the inference outcome. For comparison purposes, a
symbolic RI method, the RPNI algorithm [4], was also run on the same data. Although the
automaton extraction step improved the generalization performance of the nets; the inference
quality using RNNs was not so good as the one shown by the RPNI algorithm.
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1 Introduction

Regular inference (RI) is the problem of learning a regular language, or a finite-state automaton
(FSA) accepting it, from string examples or queries. For the case of Rl from positive and negative
samples, a theoretical framework has been presented in [5], and several methods have been
proposed, using symbolic [4, 6], connectionist [1, 2, 3, 7] and genetic [8] approaches. However, the
comparative performance of these methods on benchmark tests has not been assessed sufficiently.
In this work, both first- and second-order Augmented Single-Layer Recurrent Neural Networks
(ASLRNNs)! [3, 7] have been trained to learn the string classification task from sparse samples
containing positive and negative examples, and unbiased FSAs (or UFSAs)? have been extracted
from the trained nets using an extension of a clustering method described in [3]. Likewise,
the RPNI algorithm [4] have been applied to the same data for comparison purposes. The
generalization performance of the trained ASLRNNs, the UFSAs extracted from them, and the
FSAs inferred by the RPNI algorithm has been evaluated on common test samples. The fifteen
regular languages used as benchmark in [8], which include the seven Tomita’s languages tested
n [1, 2], have been chosen for this study (see Fig. 1), together with the same samples that were
employed as training and test sets, respectively, in [§].

2 Architectures and algorithms used in the tests

The results of some previous experiments on learning the next-symbol prediction task for RI
from positive examples [9] were taken into account to select the types of RNNs for this study.
Thus, first-order ASLRNNSs including a fully-connected recurrent layer of N hidden units with
the antisym-log activation function

!An ASLRNN consists of a fully connected recurrent layer (an SLRNN) augmented with a feedforward layer
of output units, which receive the activations of the recurrent (hidden) units.

2An UFSA is a type of automaton with positive and negative final states, which has been proposed in [3, 6]
to represent positive and negative information in a symmetrical way.
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Figure 1. Minimal-size DUFAs (deterministic UFSAs) for the 15 test languages.

91(c) = sgn(o) log(1+ alo]) (1)
and an output layer of just one unit with the sigmoid activation function
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were preferred with respect to first-order SLRNNs or other ASLRNNs with sigmoid units in the
recurrent layer, since ASLRNNs with the (antisym-log, sigmoid) pair of functions had learned
much better in [9]. It was also decided to test both first- and second-order ASLRNNs (with
identical activation functions and number of units), because RNNs with second-order connections
had been used successfully for the string classification task by other researchers (e.g. [2]). The

g2(0) =

constant @ in Eqgs. (1) and (2) was set respectively to 2 for g; and 1 for gs.
The dynamic behavior of an ASLRNN is described by

M N
ye(t) = g1 ( D wri wi(t) + Y wevgy vi(t - 1)) for 1<k <N, (3)
=1

i=1

for a first-order recurrent layer, or

M N
yr(t) = o (Z > wpij wi(t) yj(t—l)) for 1<k <N, (4)

=1 j7=1

for a second-order recurrent layer, where z;, 1 <7 < M, and y;, 1 < j < N, refer respectively
to network inputs and hidden unit activation values; and by

N
Oit) = ¢2 (wloo + wa] yj(t)) for 1<I<P, (5)

i=1

for the output layer, where O, 1 <1 < P, refer to the activation values of the output units.
A single output unit is enough for the string classification task [2, 7] (see Fig. 2), where the
net acts like an acceptor depending on the output unit value at the end of a string presentation
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Figure 2. A generic ASLRNN architecture for reqular inference through classification
of positive and negative examples.

O1(ts). Thus, a set of string-response pairs are given to the net at each training epoch, where
the response corresponds to the desired value of Oy(tf), e.g. Tyecept = 1 for positive strings
and Tcjece = 0 for negative strings. A string is correctly classified by the net if the absolute
difference between the desired response and Oq(ty) is less than a tolerance threshold e.

A true gradient-descent learning algorithm was used to train the ASLRNNs, such that back-
propagation was applied to update the weights of the output unit and supply the error values for
the hidden units, and either (first-order) Schmidhuber’s version of RTRL algorithm [10] (with
an average time complexity per time step of O(N?)) or an adaptation of it to second-order nets
(of O(N3M)) was applied to train the recurrent layer. The learning rate o and the momentum
parameter [ were fixed for all the runs: a = 0.025 and 3 = 0.5.

In order to extract a consistent deterministic UFSA (DUFA) from an ASLRNN previously
trained to classify a sample S = (ST,.57), an extension of the algorithm described in [3] was used.
A hierarchical clustering on the space of hidden unit activations serves to guide a state merging
process from the prefix tree of the whole sample S, PT'U(S). At each step, a maximum of &
pairs of clusters (states), which are the closest in the activation space, are selected as candidates
to be merged. The deterministic merge of the states associated with the first pair in the ordered
list that leads to a consistent DUFA is carried out. The clustering procedure ends when all
candidate pairs lead to inconsistent DUFAs. The DUFA resulting of this process is minimized
to obtain the extracted DUFA. The parameter k was set to 50 for the tests; in this way, it was

expected that a maximal generalization of PTU(S) would be obtained in most cases®.

3 Benchmark data, test procedure and results

Fig. 1 shows the target minimal-size DUFA for each one of the 15 test languages [8]. Ten different
samples of each language were used as training sets. Each sample S = (S1,57) was structurally
complete with respect to the corresponding minimal-size DUFA. The original samples generated
by Dupont [8], which contained repeated strings, were slightly modified just to include the empty
string A in St or S~ appropriately?. The average number of different examples in the samples
ranged from 16 for Ly to 71 for L1g. The number of recurrent hidden units that were included in

3For k = 50, the extracted DUFA is guaranteed to meet this property if the final number of clusters is < 10.
*In addition, ten negative samples were generated for language L; = a*, since Dupont considered L; to be
defined over a unary alphabet, and therefore, he did not include any negative sample for it [8].



both the first- and second-order ASLRNNs was set to N = 4 for languages Ls, L7, Lo, L1, L15
(for which the minimal DUFA contains 5 or 6 states), and N = 3 for the rest of test languages
(for which the minimal DUFA contains up to 4 states)®. Two trials, with different random initial
weights in the interval [-0.25,0.25], were run for each training set and each network type, so that
a total number of 20 runs were performed with each model for each test language.

Each network was trained to classify the strings in the given training set, which were presented
by alternating positive and negative examples until exhaustion of one of the sets and then giving
the rest of examples. A local encoding was used to represent the language symbols in the input
signals. The recurrent-unit activations were reset to 0.1 at the start of each string presentation,
and no end-of-string symbol was used. The training phase ended when all the strings in the
training set were correctly classified, using ¢ = 0.1 as tolerance threshold, and a minimum
number of 1,000 epochs were performed®. Then, a consistent DUFA was extracted from the
final net dynamics on the given sample by applying the clustering algorithm aforementioned.

To get an idea of the running time required, 2,500 training epochs over one of the largest
samples (L5 sample #10), with 79 strings and a total length of 274 symbols, took 1 minute of
CPU time on a DEC Alpha Station 3400 computer for a first-order ASLRNN and 2 minutes 10
seconds for a second-order ASLRNN, both nets with NV = 4 hidden units and 1 output unit.
The corresponding DUFA extraction, starting on a prefix tree UFSA with 85 states and ending
on a DUFA with 15 states, took around 3 seconds of CPU time.

The same test samples that had been used in [8] were employed. This is, for each run, all the
strings up to length [ but the given training examples were included, where [ was set to 9 or
7 for target languages over {a, b} or {a,b, c}, respectively. After training, the test strings were
classified both by the final net and the extracted DUFA. A test string was accepted by a trained
net if O1(ty) was greater than 0.5, and it was rejected otherwise (i.e. ¢ = 0.5 was used in this
step). For both ASLRNNs and extracted DUFAs, the correct classification rates on the three
sets of positive, negative, and all test strings were computed.

For each language and each type of inference, the averages of the above rates over the 20 runs
were calculated, and they are displayed in the former three wide columns of Tables 1 and 2.
The fourth wide column refers to the arithmetic mean of the positive and negative classification
rates. The fifth wide column in Table 1 shows the percentage of times the whole test sample was
correctly classified by the trained net (success rate); whereas in Table 2, it shows the percentage
of times the target DUFA was extracted (identification rate). The bottom row of the tables
displays the averages of these five features over the 15 test languages.

The results of the generalization tests are presented in Table 1, for the trained first- and
second-order ASLRNNs, and in Table 2, for the corresponding extracted DUFAs. It can be
observed that both architectures performed rather similarly, a little bit better the second-order
ASLRNNs. However, all global classification rates were below the 80%, and the success rate was
very poor (7%), since for most of the languages, a perfect classification of the test sample was
not achieved in any of the 20 runs. In general, the DUFAs performed better than the trained
nets from which they were extracted, improving the global classification rates between a 3% and
a 4%, and raising the identification rate up to a 19%.

Table 3 shows the summary of the global results obtained by the different RI methods tested
in the experiment. The best performance corresponded to the RPNI algorithm. Dupont re-
ported average correct classification rates of 85.4% and 94.4% for his non-incremental and semi-
incremental genetic RI methods, respectively, on this benchmark [8].

5The results of the experiments reported in [2] were used to set the value of N. The aim was to provide
sufficient hidden units to allow learning of training samples while not impairing the generalization performance.

5The requirement of a minimum number of training epochs was aimed at giving the net enough time to contract
the clusters formed in the hidden unit activation space.



Nets Pos.class Neg.class Tot.class Av.class Success

F.0. [ 5.0. | F.O. [ 5.0. | F.0. [ S.0. | F.O. [ S.0. || F.O. | S.0.

Ly 90.0 | 86.0 99.6 | 96.5 99.5 96.4 94.8 91.3 45.0 35.0
Lo 92.1 84.5 92.6 | 89.7 92.6 | 89.7 92.4 87.1 20.0 10.0
Ls 53.2 78.5 79.3 72.9 68.8 74.9 66.3 75.7 0.0 0.0
Ly 66.6 74.7 67.6 58.8 67.0 | 68.0 67.1 66.8 0.0 0.0
Ls 49.0 52.4 74.1 76.6 69.9 72.5 61.6 64.5 0.0 5.0
Le 37.1 44.0 63.8 | 60.4 54.9 54.9 50.5 52.2 0.0 0.0
L7 59.2 77.4 60.7 | 45.5 60.1 57.0 60.0 61.5 0.0 0.0
Ls 82.3 | 84.6 89.6 72.0 89.5 72.2 86.0 78.3 10.0 0.0
Lo 87.7 | 90.0 92.9 | 811 92.9 | 81.2 90.3 85.6 0.0 0.0

Lo 46.0 53.7 93.7 | 93.4 92.7 | 92.6 69.9 73.6 0.0 0.0
Ly 69.2 76.0 55.8 70.2 60.3 72.1 62.5 73.1 0.0 5.0
Lo 94.3 | 88.3 96.4 | 90.7 96.3 | 90.6 95.4 89.5 0.0 5.0
Lis 50.7 | 81.1 51.1 81.1 50.9 | 81.1 50.9 81.1 0.0 45.0
Ly 39.1 65.3 85.2 79.7 83.7 | 79.2 62.2 72.5 0.0 0.0
Lis 58.0 75.9 89.7 | 84.5 89.5 84.4 73.9 80.2 0.0 0.0

| Mean || 65.0 | 742 | 795 | 769 [ 77.9 ] 778 [ 723 | 755 ] 50 ] 7.0
Table 1. Classification results of first-order (left) and second-order (right) ASLRNNS.

DUFAs Pos.class Neg.class Tot.class Av.class [dentaf.

F.O0. | s.O. F.O0. | s.O. F.O0. | s.O. F.O0. | s.O. F.O0. | s.O.
I 100.0 | 100.0 100.0 | 100.0 || 100.0 | 100.0 || 100.0 | 100.0 || 100.0 | 100.0
Lo 96.7 93.7 96.4 94.4 96.4 94.4 96.6 94.1 55.0 25.0
Ls 47.3 59.4 89.5 85.3 72.8 75.0 68.4 72.4 0.0 5.0
Ly 55.6 53.8 84.5 82.4 67.6 65.7 70.1 68.1 5.0 10.0
Ls 38.3 42.4 82.4 82.8 75.0 76.1 60.4 62.6 0.0 15.0
Lg 31.0 31.6 70.8 76.1 57.5 61.2 50.9 53.9 0.0 0.0
Ly 53.8 61.4 71.3 71.0 64.9 67.4 62.6 66.2 0.0 10.0
Lg 100.0 90.0 96.4 81.1 96.5 81.2 98.2 85.6 70.0 10.0
Lo 96.0 91.7 95.6 88.8 95.6 88.8 95.8 90.3 5.0 0.0
Lo 54.2 55.6 93.5 94.7 92.7 93.9 73.9 75.2 0.0 0.0
L 59.8 65.3 62.9 75.8 61.8 72.3 61.4 70.6 0.0 20.0
L2 100.0 96.5 97.6 93.9 97.6 93.9 98.8 95.2 40.0 30.0
Lis 41.3 78.7 71.4 87.0 56.3 82.9 56.4 82.9 10.0 65.0
Lia 39.3 61.8 91.1 83.7 89.5 83.0 65.2 72.8 0.0 0.0
Lis 72.1 75.3 93.2 93.4 93.0 93.2 82.7 84.4 0.0 0.0

| Mean [| 657 [ 705 || 86.4 [ 86.0 || 811 | 819 ]| 761 | 783 [ 19.0 | 193 |
Table 2. Classification results of DUFAs extracted from trained ASLRNNSs.

4 Conclusions

First- and second-order ASLRNNs have demonstrated similar generalization capabilities on the
benchmark test, somewhat better the latter, with approximately a 78% of total correct classi-
fication rate and full success on the test sample only in a 7% of the runs. These results were
improved by the extracted DUFAs, which reached an 82% of total correct classification rate
on the test samples and a 19% of full success (and target identification) rate. This validates
empirically the UFSA extraction method proposed and confirms the beneficial effects, pointed
out by other researchers [2], of extracting an automaton from a trained RNN with continuous
activation function. Not only a symbolic representation of the inference result is obtained, but
also the generalization performance is improved and the problem of bad classification of long
strings due to drifting activations is avoided. However, even after DUFA extraction, the infer-
ence quality shown by the connectionist RI methods tested has been notably worse than that
displayed by the symbolic RPNI method [4] (96% of total correct classification rate and 78%
of identification rate). The average correct classification rates of the connectionist approaches
have been also worse than the ones reported by Dupont for his genetic RI approaches [8].



| RGI METHOD || Pos.class | Neg.class | Tot.class | Av.class | Success |

F.O. ASLRNNs (An.log, Sigm.) 65.0 79.5 77.9 72.3 5.0
S.0. ASLRNNs (An.log, Sigm.) 74.2 76.9 77.8 75.5 7.0
DUFAs F.O.nets (An.log, Sigm.) 65.7 86.4 81.1 76.1 19.0
DUFAs S.O.nets (An.log, Sigm.) 70.5 86.0 81.9 78.3 19.3

| RPNI (Oncina-Garcia) [ 918 [ 975 [ 960 | 947 [ 780 |

Table 3. Summary of results of the reqular inference experiments.

Nevertheless, it might be argued that the benchmark samples were specially suitable to the
RPNI method, since they often included the representative samples that allowed the identifica-
tion of the target automata by this algorithm. On the other hand, the small number of examples
in the benchmark training sets (an average of 37 different strings) might be insufficient, from
the statistical point of view, to allow the networks generalize correctly, this being probably the
cause of the middling results obtained by the RNN-based approaches. Moreover, we conjecture
that a quite higher generalization performance might be achieved by ASLRNNs by increasing
enough the size of the training set. This hypothesis is supported by the results reported in some
previous studies on inferring the Tomita’s languages using RNNs; e.g., an average of 56% total
correct classification rate on test samples after learning to classify small training sets of around
20 examples [1], but a 99.9% when training sets of around 1,000 examples were used [2]. Hence,
it seems that, at least for the tested task and languages, connectionist RI methods need larger
samples than symbolic RI methods to reach a similar level of generalization performance. This
is not surprising, since connectionist methods can be regarded indeed as statistical approaches.
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