
MTMesh: Image Based Mesh Reconstruction and Rendering
M. Sainz, N.Bagherzadeh

Department of Electrical and Computer Science
University of California Irvine

USA
{msainz,nader}@uci.edu

A. Susin
Departament de Matemàtica Aplicada 1

Universitat Politècnica de Catalunya
Spain

toni.susin@upc.es

ABSTRACT
We present a new image based method of reconstructing
and rendering models from a set of calibrated input im-
ages. First an improved hardware accelerated voxel carv-
ing method is used to obtain the voxels corresponding to
the volume occupied by the model. Then a new method of
real-time multitextured mesh is proposed in order to obtain
realistic renders of the recovered models. This representa-
tion uses a polygonal relaxed surface mesh obtained from
the final set of voxels and overlapping projective texture
maps to achieve photo-realistic appearances.

KEY WORDS
Volumetric reconstruction, Voxel carving, Hardware accel-
eration, Overlapping textures.

1 Introduction

In this paper we present a method for extracting a 3D
volumetric representation of an object from a set of cali-
brated images taken with a digital camera or handheld cam-
corder. This reconstruction is then processed using a novel
view dependent multi-textured mesh model paradigm and
we provide an efficient rendering algorithm obtaining high
quality realtime renders.

In recent years Image Based Rendering techniques
(IBMR) have demonstrated the advantage of using real im-
age data to greatly improve rendering quality. New ren-
dering algorithms have been presented that reach photo-
realistic quality at interactive speeds when rendering 3D
models based on digital images of physical objects and
some shape information (i.e. a geometric proxy). While
these methods have emphasized the rendering speed and
quality, they generally require extensive preprocessing in
order to obtain accurately calibrated images and geometric
approximations of the target objects. Moreover, most of
these algorithms heavily rely on user interaction for cam-
era calibration and image registration or require expensive
equipment such as calibrated gantries and 3D scanners.

Our goal is to extract 3D geometry of the target ob-
jects in the scene, based on given camera locations and
their respective images. Different approaches such as pho-
togrammetry, stereo vision, contour and/or shadow analysis
techniques work with similar assumptions. The complete
pipeline to produce 3D models from images starts with a

calibration process of the images themselves. There exist
several approaches to achieve such calibration as shown in
[1]. Throughout this work we assume that this calibration
is well known and the objects in the scene are contained
within a finite volume.

The next step in the pipeline is a scene reconstruc-
tion to obtain a complete model representation that can be
used to render novel views of the scene. Depending on the
chosen representation for the mode, solutions ranging from
point based approaches to complete 3D textured meshes
are available in the literature ([2]). We propose a novel
model representation that obtains a polygonal mesh from
a voxelized reconstruction and uses the images as over-
lapping texture maps. During rendering, our approach ef-
ficiently combines all the images as view dependent pro-
jected texture maps obtaining photorealistic renders at in-
teractive speeds.

Summarizing, in this project we present a method,
based on image based modeling techniques, that allows
the automatic reconstruction of physical objects with all
their properties (shape, color and texture) properly recov-
ered. Figure 1 illustrates the block diagram of the sug-
gested pipeline [1] for the 3D model reconstruction from
images problem

Figure 1. Image Based Modeling pipeline.

The input to the proposed system is a video sequence
or set of images taken with an off-the-shelf digital camera
or camcorder, by moving it around the physical object that
is going to be reconstructed. Then, we use the calibration
process presented in [3] to reconstruct the 3D structure of
the scene and the motion of the camera analyzing how a
set of 2D tracked points move in the image sequence. A
volumetric reconstruction step fits a volume of voxels to

msainz
Copyright © 2003 IASTED. Reprinted from the 2003 IASTED Conference in Visualization, Imaging and Image Processing (VIIP'03). This material is posted here with permission of IASTED. Such permission of IASTED does not in any way imply IASTED endorsement of any of University of California/Irvine's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from IASTED by sending a request email message to calgary@iasted.com. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

the object in the scene using the information of the calibra-
tion and the input images. The last stage of the pipeline is
a modeling process that transforms the voxelized volume
into a polygonal mesh suitable to be rendered using our
proposed algorithm in any 3D pipeline.

2 Volumetric Reconstruction

In order to reconstruct the volume occupied by the objects
in the scene we have improved the approach presented in
[4], that is based on carving a bounding volume using a
color similarity criterion. The algorithm is designed to use
hardware accelerated features from the videocard. More-
over, the data structures have been highly optimized in or-
der to minimize run-time memory usage. Additional tech-
niques such as hardware projective texture mapping and
shadow maps are used to avoid redundant calculations.

The proposed implementation of the space carving
methodology consists of an iterative algorithm (shown in
Algorithm 1) that has an outer loop that performs a pro-
gressive plane sweep along one axis of the bounding box
that contains the object to be reconstructed until the set of
non-carved voxels remains constant.

begin
do

generate occlusion maps
for i = 0 to i = maxSlice

find surface voxels on slice i
for each surface voxel

for each reference view
if visible and not occluded

store footprint data
end
evaluate voxel consistency
if voxel is not consistent

mark voxel for deletion
end

end
delete voxels

while (totalCarved > 0)
end

Algorithm 1. Proposed voxel carving algorithm.

On each iteration of the sweep, only the voxels that
belong to the surface of the volume slice are processed.
Then, during the color consistency test, each voxel is tested
against each of the views to determine the set of contribut-
ing reference images. Then the voxel footprint is calcu-
lated and the color consistency function decides, whether
the voxel is consistent and kept, or is inconsistent and re-
moved. This color test is performed by correlating each
pair of color histograms of the contributing views, and if
more than a threshold of images are correlated (i.e. similar
color information), the voxel is considered to be consistent.

The following subsections present more details of the
key steps of the carving algorithm.

2.1 Surface Voxels and Occlusion Maps

The main data structure used to store the voxels of the vol-
ume is a three dimensional bitmask, that encodes only if a
voxel is present or not. The main advantage of such struc-
ture is the memory footprint at runtime: a 512x512x512
structure has 16Mbytes of storage.

The voxels on the surface can be easily determined
by performing a 6-neighbors test and selecting those voxels
with an active bit that have at least one face to face contact
with empty voxels.

During the plane sweep and for each of the analyzed
voxels, we want to determine the subset of reference im-
ages where each of them are visible. Since parts of the
current filled volume may occlude the voxels for some of
the views, it is necessary to define a set of occlusion maps
and use them during visibility determination.

We propose to create at the beginning of each iteration
a depth mask for each of the reference views that can be
used in a zBuffer test to determine visibility of any given
voxel in that view. To determine if a voxel v is visible from
reference view i, one can transform the coordinates of the
center of the voxel to the view coordinate system and do a
simple depth test for visibility determination: if the voxel
depth from the reference view is larger than the depthmap
value at that projection, the voxel is occluded by the active
volume of the scene.

We use the ε-z-buffer test concept as presented in
[1] which consists of generating a depthmap with an offset
of ε units by applying a translation of the voxel vertices
along their projection rays as shown in Figure 2c. This
perspective offset can be applied by exploiting the OpenGL
vertex programmability of the new videocards.

Figure 2. Comparison of ε-z-buffer perspective offset (c)
versus an one-level eroded volume (a) and a standard depth
offset (b).

2.2 Consistency Test

The consistency test is the key step in the voxel carving
algorithm. Its function is to decide whether a voxel is going
to be kept because its appearance is similar in the reference
views were it is visible, or is going to be carved away.

We extend the proposed criterion of [5] consisting in
storing the 3D color histogram structure, CHi

j(r, j, b) for

each footprint j of a given voxel i, defined as

CHi
j(r, g, b) =

#(r, g, b)i
j

#pj
, (1)

where #(r, g, b)i
j stands for the number of times the color

value (r, g, b) appears in the footprint j of voxel i, and #pj

is the total number of pixels included in the footprint.
Instead of looking only for histograms intersections

as proposed in [5], we calculate the normalized correlation,

N i
j,k =

∑
CHi

j(r, g, b) · CHi
k(r, g, b)√∑

(CHi
j(r, g, b))2 · ∑(CHi

k(r, g, b))2
(2)

between each pair of histograms and count how many are
above a minimum correlation value. When the ratio of high
versus low correlated pairs is above a threshold, the voxel
is considered as consistent.

To optimize storage of the footprint histograms we
quantize the RGB values into a set of only 8 bins for each
color channel. This way, the storage needed for a 256 color
resolution, 2563 (more than 16 million), is reduced to only
512 levels. Finally, to account for small color disparities
due to sensor sensibility, the bins are extended so they over-
lap by a given amount (usually a 15%).

3 MTMesh Models

At this point of the proposed pipeline, the reconstruction of
the scene is a set of voxels, and the reference images. In
order to render the model in a 3D application, we need to
define a proper model representation that integrates the 3D
recovered information together with the images to achieve
a realistic result. In the following subsections we present
a novel multitextured mesh, MTMesh representation and
its hardware accelerated realtime rendering algorithm. The
overall algorithm can be summarized in the block diagram
of Figure 3.

Figure 3. MTmesh creation block diagram.

3.1 MTMesh Generation

An initial smooth triangular mesh covering the surface of
the reconstructed scene is created using a variation of the
SurfaceNet algorithm [6], that creates a globally smooth
surface model from the binary segmented volume data re-
taining the detail present in the original segmentation. The
mesh M is constructed by linking nodes on the surface of
the binary-segmented volume and relaxing node positions
(see Figure 4) to reduce the energy in the surface net while

constraining the nodes to lie within a surface cube defined
by the original segmentation.

Figure 4. Surface Net reconstructed from the voxel model.
On the right we have the same mesh after the relaxation
step.

After that, we construct the MTMesh model by defin-
ing a set of indexed face lists Fi for each reference view i.
Each of these lists contains the faces of the mesh M visi-
ble from the corresponding view and the image is used as a
projective texture map for the faces.

Moreover, since the relative orientations of the faces
and the corresponding image planes are variable, we can
define a projection quality factor αi that weights the con-
tribution of a reference view i to each of the faces of the
initial mesh. We calculate this weight in a per vertex basis
using θi(v), the relative angle between each vertex and the
reference view center of projection

αi = 1 − θi(v)
90◦

(3)

In order to obtain a quality per pixel of the reference
image, we can use the OpenGL API to render and interpo-
late a vertex-colored mesh using the weight factor as the
R,G,B and A values. The resulting framebuffer is captured
and used to modulate the texture colors and alpha channel
as shown in Figure 5.

Figure 5. Quality map for a given reference view. a) shows
the original image of an object, b) is the quality factors
encoded as a greyscale map, and c) is the image with a
per-pixel quality factor measure multiplying the R,G and B
channels.

The final model consists of the vertices and faces of
the mesh M and, for each reference view, the indexed list of
visible faces as well as a modified texture map that contains
the original image modulated on a pixel basis by the αi

weights.

3.2 MTMesh Rendering

During rendering time, the proposed strategy, given a new
viewpoint, is to determine which reference views con-
tribute to the new one and then render them and since they
overlap, combine them to produce the final render.

Figure 6. Reference view selection. In this case views 1,2
and 6 will be selected to render the novel view e

As illustrated in Figure 6 given a novel viewpoint e
with viewing direction n, a reference view i is selected if
the angle βi,n between the reference view direction ri and
the new view direction n is less that 135◦, which is a con-
servative value that will include enough reference views to
guarantee a render without holes. Based on this angle we
can calculate an angular weight

wi(βi,n) =
{

1.0 βi,n < 45◦

cos(βi,n − 45◦) βi,n ≥ 45◦ (4)

Furthermore, an additional positional weight wi(di,e)
based on the Euclidean distance di,e = |e − oi| from the
origin of the reference viewpoint oi to the novel viewpoint
is calculated. A final blending weight for each contributing
reference image can be obtained as wi = wi(βi,n)·wi(di,e)
and then normalized such as that

∑
i wi = 1.0.

During rendering, a first pass creates an occupancy z-
buffer that only allows the rendering of the triangles closest
to the new viewpoint. In the second pass each reference
view list of faces Fi is rendered using the calculated weight
wi as a modulating color for the texture Ti. This process
gives a final color for each pixel of

Ci(x, y) = wi · α̃i · (Ri(x, y), Gi(x, y), Bi(x, y), 1) (5)

where α̃i is the quality factor, initially associated to each
vertex (3), and interpolated for the considered pixel.

By using the appropriate OpenGL blending functions
we can render each selected view separately and accu-
mulate the color values obtaining a final pixel color of
C(x, y) =

∑
i Ci. However, the accumulated weights,

which are stored in the alpha channel of the final image
do not necessarily sum up to one, requiring a post-render
normalization process.

Without any hardware extensions to perform complex
per-pixel manipulations this normalization step has to be

performed in software. However, widely available graph-
ics accelerators now offer per-pixel shading operators that
can be used to perform this normalization more efficiently.
In our implementation, we use nVIDIAs OpenGL Texture
Shader extension compensating the color intensity defi-
ciency by remapping of the R, G and B values based on
the value of α. During initialization time we construct a
texture (see Figure 7) encoding in (s,t) of a look-up table of
transparency and luminance values respectively, from 0 to
256 possible values. Based on this alpha-luminance map,

Figure 7. Alpha-Luminance map.

we proceed to correct each of the R,G and B channels of
every pixel of the blended image I . Using NVIDIAs tex-
ture shader extension operation the graphics hardware can
remap the R and α by a texture lookup with coordinates s
= α and t = R into our alpha-luminance map. At this point,
rendering a quadrilateral with the intermediate image I as
texture-one and the alpha-luminance map as texture-two,
and setting the color mask to block the G, B and α channels
will compensate the red channel by α−1 and store it will
compensate the red channel by α−1 and store it in a new
image IR. Note that only the R and α channels are used
by this dependent texture replace operation. Therefore, we
need to remap the G and B channels to the R channel of two
additional buffers IG and IB while copying the α channel
as well and is achieved by rendering two quads and using
NVIDIAs register combiners. Then the dependent texture
replace operation is also performed on the images IG and
IB . By separating the RGB channels into three different
images and using the αR-dependent texture replace oper-
ation we get the corrected RGB values in the red channel
of three new images that are finally composited into the the
final image using NVIDIAs register combiners. Figure 8
illustrates this normalization process.

Figure 8. Normalization process based on register combin-
ers

4 Results

Several validation and verification tests were performed
with images from a home video recording system with
auto-focus and auto-exposure enabled. Two datasets are
presented here, consisting of video sequences that have
been preprocessed in order to remove the interlacing and
to enhanced the color saturation, since the original tapes
present a high content of overexposed areas. All the tests
and timings have been performed in a PC P4 2.0Ghz with
1Gb of RAM and a NVIDIA GeForce4 Ti 4600 videocard
with Detonator drivers 40.03.

The first dataset corresponds to a non-professional
recording of a statue in the ruins of Persepolis (Iran), the
two-head-horse (see Fig. 9, left column) and it contains
702 frames of 720x480 pixels each. The initial sequence is
decimated to a final set of 12 frames that will be used dur-
ing the volumetric reconstruction. The carving process is
set to use an initial resolution of 200x176x138 voxels and
it performs 165 iterations in 70 minutes, reducing the oc-
cupancy of the initial volume to a 43%, generating a final
solid model of 4857600 voxels. If the same reconstruction
if performed using half the initial resolution, the compu-
tation time is less than 10 minutes. The mesh generation
takes 12 seconds to produce a colored triangulated mesh
of 203391 vertices and 409978 faces. The rendering time
is 6.5 frames per second on the above mentioned platform
without any level-of-detail simplification.

The second dataset presented here, the monster (see
Fig. 9, right column) consists of a set of 16 still images of
1024x1024 pixels each taken from an object on a turntable.
A manual tracking process of the fiducials on the surface of
the object is performed to obtain the proper calibration of
the images using [3].

The volumetric reconstruction starts with an initial
volume of 250 x 225 x 170 (9562500 voxels), and using
five manually selected frames from the initial set, it pro-
duces in 43 iterations and 3.5 min. a final reconstruction of
1349548 voxels (a 14% of the initial volume). The mesh
model has 150714 vertices and 305516 faces and is ren-
dered at 6 frames per second. The computation time of the
smoothed and colored mesh is 4.3 seconds.

5 Conclusions

In this paper we have presented a novel complete pipeline
for image based modeling that can be used to reconstruct
3D objects and scenes. Moreover, we propose a new model
representation that weights and combines the original im-
ages onto a single triangular mesh and can be rendered in
realtime using a new rendering paradigm.

We have applied the proposed pipeline to successfully
reconstruct objects captured in controlled environments, as
well as in field trips to archeological sites where lighting
conditions and environment interactions are not ideal.

Currently we are working towards getting more re-
constructed datasets and also to improve speed and relia-

bility of the reconstruction algorithm.
The sensor device used for capturing the images is an

off-the-shelf digital camcorder, and we have found out that
the automatic settings of this type of cameras are not well
suited for the purposes of object reconstruction from im-
ages because the automatic exposure compensation plays
against the voxel carving algorithm by changing signifi-
cantly the surface color of the objects. We expect to find
a feasible way to compensate this on the actual tapes, and
for future acquisitions we will design the proper protocol
and sensor adjustments to avoid such problems.

Acknowledgements

This research was partially supported by the National Sci-
ence Foundation under contract CCR-0083080 and by the
Comissio Interdepartamental de Recerca i Innovacio Tec-
nologica, Gaspar de Portola grant C02-03. We would like
to thank Dr. Farrokh Shadab for kindly providing his per-
sonal video tapes of his trip to Persepolis as data for our
experiments.

References

[1] M. Sainz. 3D Modeling from Images and Video
Streams. PhD. Thesis, University of California Irvine,
July 2003.

[2] M. Pollefeys, L. Van Gool, M. Vergauwen, K. Cor-
nelis, F. Verbiest, J. Tops, 3D recording for archae-
ological fieldwork, in IEEE Computer Graphics and
Applications, 23(3):20–27, May-June 2003.

[3] M. Sainz, A. Susin and N. Bagherzadeh. Camera Cal-
ibration of Long Image Sequences with the Presence
of Occlusions, in Proc. IEEE International Confer-
ence on Image Processing, September 2003.

[4] M. Sainz, N. Bagherzadeh and A. Susin, Hardware
Accelerated Voxel Carving, in 1st Ibero-American
Symposium in Computer Graphics (SIACG 2002),
Guimaraes, Portugal. pp 289-297, July 2002.

[5] M. Stevens, B. Culbertson, T. Malzbender. A
Histogram-Based Color Consistency Test for Voxel
Coloring in Proc. of International Conference on Pat-
tern Recognition, Vol. 4, pp. 118-121, 2002.

[6] S. Gibson, Constrained Elastic SurfaceNets: Gener-
ating Smooth Surfaces from Binary Segmented Data,
in Proc. Medical Image Computation and Computer
Assisted Interventions, pp. 888- 898, October 1998.

Figure 9. Reconstruction results. The left column shows some of the the two-head-horse dataset images, the reconstructed
camera path and a novel view rendered using the reconstructed mesh. The right column shows the original 16
frames of the monster dataset, the calibrated camera path, the reconstructed and relaxed triangular mesh without
coloring and a novel rendered view of the object.

